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Abstract 

We give a direct proof of Atiyah’s theorem relating instantons over the four-sphere with holo- 
morphic maps from the two-sphere to the loop group. Our approach uses the non-linear heat flow 
equation for Hermitian metrics as used in the study of Kahler manifolds. The proof generalises 
immediately to a larger class of four-manifolds. Copyright 0 1998 Elsevier Science B.V. 
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1. Introduction 

It is interesting to both mathematicians and physicists to relate gauge-theoretic construc- 
tions over four-manifolds to spaces of holomorphic curves into related manifolds. In physi- 
cal terms, this amounts to relating the instantons of four-dimensional and two-dimensional 
theories. One of the earliest results of this type is a theorem of Atiyah that relates Yang- 
Mills instantons over the four-sphere to holomorphic maps of the two-sphere to the loop 

group PI. 

Theorem 1.1 (Atiyah). For any classical group G and positive integer k, the ,following 
two spaces are diffeomorphic: 
(i) the parameter space of Yang-Mills k-instantons over S” with group G, modulo based 

gauge transjbrmations, 
(ii) the parameter space of all based holomorphic maps S2 + SZG of degree k. 
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The purpose ofthis paper i$ to describe a new isomorphism bctwccn the spaces (i) and (ii) 
of this theorem. Under any such isomorphism. there arc interesting relationships. hctwccn 
the symmetries of the respective spaces. A description of the particular symmetries that 
feature in the different isomorphisms would take us too far from the aims of this paper. WC 
will instead settle for a brief comparison conlined to this paragraph. In both the isomorphism 
defined by Atiyah and the one described hem. the circular symmetry given by rotating the 
S’ of based holomorphic maps S’ --t QnC (infnity is fixed) induces the same symmetry on 
the space of instantons as the circle of isometries of SJ given by rotating the first coordinate 
of C’ c S’. An extension of the reult described in this paper to include trll holomorphic 
maps 5” + QG allows the circle symmetry of S’ to be enlarged to SCI(3). (The space 
of unbased holomorphic maps S’ + QG of fixed degree is an infinite dimension1 xpacc 
that tibres over the loop group with fibres isomorphic to the hnite-dimensional instanton 
spaces.) The space of conformal symmetries of the unit disk { /:/ 5 I ) that fix : = I act 
on the boundary circle and hence on the loop group. This induces an action on the space 
of holomorphic maps S’ 4 JIG which corrcsponds via the isomorphism of this paper to 
an action on the space of instantons induced from a family of conformal tranformations 
of S’. Using Atiyah’s isomorphism the two previous examples of symmetries do not arise 
from conformal transformations of S’. Instead. Atiyah‘s isomorphism gives rise to other 
symmetry comparisons, including an interestin, ~7 involution on the space of holomorphic 
maps S’ 4 GG, induced from the involution on SJ obtained by swapping coordinates in 
C’ c S’. For the analogous study of a new isomorphism of the moduli space of monopoles 
with rational maps and the interesting symmetries that arise see [ I2,I3,201. 

Atiyah’s proof of his theorem relies on algebraic geometry which uses the special form 
of the twistor space of the four-sphere. One can view this paper as presenting an alternative 
proof of Atiyah’s theorem more in line with the direct methods used by Dostoglou and 
Salamon (9. IO] in their proof of a relationship between the instantons over a large class 
of topologically more interestin, 0 four-manifolds and pseudo-holomorphic curves inside 
particular Kahler manifolds. We essentially flow directly from the holomorphic map into 
the loop group to the instanton over the four-sphere. This method has the advantage that 
it generalises to a larger class of four-manifolds and loop groups. It also tits in with the 
homotopy theorists’ intuition regarding the respective configuration spaces. 

Choose local coordinates ((II’. :) = ( II + it’. t + ij.)) for S’ x 1). The map ,f’: S’ --t 

R U (n) is holomorphic when ,/‘ -’ i3,, ,f’ : ( 1; I = I ) + gl(n, C) extends to a holomorphic 
map from the disk (1-1 5 I) to @(PI. C) for each 11’ E S’. Put rl equal to this extension. 
Over S’ x D define the connection 

Af = rj drTl - rjT du!. 

so A f’ is flat on each {w) x 1). Furthermore, 

which resembles the anti-self-dual (ASD) equations with respect to the product Kahler 
metric on S’ x D: 



where we are using the round metric and the hyperbolic metric on S’ and D, respectively. It 
so happens that S’ x D 2 S’ - S’ and the product metric is conformally equivalent to the 
round metric on S4. That means that (2) also resembles the ASD equations over S4. Notice 
that if we change the product metric non-conformally so that the area of the two-sphere 
goes to infinity. or equivalently so that the area of the disk goes to zero. then the third of’ 
the ASD equations tends to the flat third condition of (2). See Remark 1.3 (iii) below. 

Atiyah remarked that his proof, which ubes a result of Donaldson 161, merely give\ 
existence without a direct means of associating an instanton to a holomorphic map. In [7j. 
Donaldson suggested that there ought to be some type of adiabatic limit proof that avoids 
Atiyah’s roundabout route. The following theorem addresses these two comments and gives 
an alternative proof of Atiyah’s theorem. 

Remark 1.3. 
ii) 

(ii) 

(iii) 

(iv) 

The sense in which the connections are close will be made clear later. We will not 
actualI\/ prove that the connections are close. rather it will be sufficient to prove that 
Hcrmitian metrics associated to the connections are uniformly close. The precise ecti- 
mate is given in Lemma 4.7. 
The techniques in this paper generalise to any compact group. For the orthogonal and 
symplcctic groups, we can deduce the corresponding result from the unitary case, rather 
than using the more general construction. This is because. as subgroups of Lr (n ). the 
extra structure determined by O(n) and Sp(~l) is quite explicit. The objects we use 
inherit the extra structure by their uniqueness properties. 
We can think of Eqs. (2) as describing the ASD equations with respect to a metric 
that degenerates in the disk factor. Theorem I .2 essentially describes the limit of the 
moduli space of instantons as we stretch the metric on S’ so that the area of the disk 
goes to zero. 
The connections invariant under the natural circle action on S’ can be identified with 
hyperbolic monopoles. The results in this paper generalise some parts of [ 13.141. 

The novelty of the decomposition S4 = S’ x B3 U S’ x D2 rather than the more usual 
picture of S’ as CP’ with a divisor collapsed allows us to generalise the result. We can 
replace the loop group and S’, respectively in Theorem 1.2 by LGL(n, C)/L$GL(n, C) 
and Xx = S’ x B” U S’ x C for a Riemann surface C with 8.Z = S’. Precise definitions 
are given in Section 5. 



2. Metrics on the four-sphere 

In order to define a global metric over S4 we shall use the identification 

S4 Z HP’ = H*/H*. 

where the non-zero quaternions H* act on the right of H2. We can cover HP’ with two 
affine complex coordinate patches 

{(q, 1)lq = a + b.il U ((1, qP’)lq-’ = A + Bjl 

The round metric is then given by 

dsz = 4(da da + db db) 4(dA dA + dB dB) 

(1 + lal* + lB12)2 = (1 + lAl2 + lBl*)* 

Consider S& c HP’ given by (h = 0) and SA c HP’ given by {a = 0, lb1 = 1). We have 
notated these two submanifolds with subscripts since we will refer to them again. The open 
submanifold S4 - SA can be identified with a trivial disk bundle over Sk. We would prefer to 
work in the coordinate system that parametrises this disk bundle. Thus, S4 - SA = ((w, z)) 
where UI E C (and 1~’ E C) parametrises S,& and (Z E C I (~1 < 1) parametrises the disk 
fibres. We can parametrise all of S4 by including the over-defined coordinate (1~1 = 1). 
With respect to this coordinate system the round metric is given by 

’ 4dtidw 4dZdz 

(1 + lwl2)” + (1 + I#)2 

We will instead work with the conformally equivalent metric 

4dGdw 
ds2 = (1 + Iwl”)’ + 

4dZdz 

(1 - lZl2)” 
(4) 

which is the product of the round metric on SL with the hyperbolic metric on the disk. In 
particular, it is a Kahler metric on S* x D. 

3. Loop group 

Let E be a framed U(n)-bundle over S4 with c*(E) - $ct (E)* = k. Let A be a smooth 
unitary connection on E. We will show how to associate to A a smooth map from S2 to the 
loop group, QU(n). 

Fix w E S2 and consider the associated fibre, D,. Over D,, A defines a holomorphic 
structure on E. Choose the basepoint over which we frame E to lie on the SA c S4 that 
gives the common boundary to all the disks. 
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Proposition 3.1. There is a unique frame g, of E over D,, satisfying: 

(i) aAgW = 0; 
(ii) g, is unitary on 8 D,,; 

(iii) g, matches the framing at the basepoint. 
Furthermore, for U c S2. gul is a frame for E over U x D which is smooth in w. 

This is just a restatement of the factorisation theorem for loop groups as observed by 
Donaldson [7]. 

Theorem 3.2 [17]. Any loop y E LGL(n, C) can be,factorised uniquely 

\l,ith y,r E QU(n) and y+ E L+GL(n, C), those loops that are boundary values of holo- 
morphic maps,from the disk to G L (n. C). In fact the product map 

QU(n) x L+GL(n. C) -+ LGL(n, C) (5) 

i.7 a dij6eomorphism. 

Proof of Proposition 3.1. Choose a frame g of E over U x D satisfying api = 0. That we z 
can do this so that g is smooth in w is proven in [Sl. Also, choose a unitary frame of E along 
S,i c S’ that agrees with the framing at the basepoint. Over each disk D,, Theorem 3.2 
enables us to find a unique v+(w) that maps D,l, holomorphically to GL(n. C) so that 
g = h;v+ is unitary on SA = a D, and agrees with the frame at the basepoint. In fact, since 
(5) is a diffeomorphism, when restricted to SA = a D,, y+ is smooth in w. Since y+(m) 
is holomorphic in z there is an exact expression for its values on the interior of D,. via a 
Cauchy integral formula. It follows that y+ is smooth in w over all of U x D. Since g was 
chosen to be smooth in w it follows that g = iv+. is also. 3 

Equip the space of gauge equivalence classes of connections on a bundle E over S”, B,i, 
with the smooth topology and likewise for the space of smooth maps from the two-sphere 
to the loop group, Map* ( S2. LJ U (n)). 

Corollary 3.3. There is a smooth map 

F : B,4 + Map*(S*, au(n)) 

Proof: Given a smooth connection A on E, on each disk in S2 x D 2 S4 - SA restrict the 
g supplied by Proposition 3.1 to the boundary SA to get S2 unitary frames there. Use the 
frame defined by the disk corresponding to 00 E S,& as a background frame. Comparing 
this to the other frames we get a smooth map 

F(A) : S2 -+ au(n) 

that sends 00 to the constant loop I. Furthermore, the factorisation (5) which gives the 
smoothness of F(A) also implies that F is smooth as a map on Bs4. 0 



Corollary 3.4. !f’ A satisfies the ASD ryuatioru thrrl .F( A I is (I holnmorphic mq~. 

Proc$ We need only two of the three ASD equations to prove this. In complex coordinates 
they can be combined to give 

18;. $1 = 0. (6) 

Associate to A the frame R from Proposition 3.1. Since a!~ = 0 it follows from (6) that 
?I! (aI$g) = 0 or equivalently that 8tg = gq for a map‘17 : S’ x D --f G L(n. C) that 
is holomorphic in z. Now choose a unitary gauge for E in a neighbourhood of $ c S” 
that extends the backgound frame on SA determined by A over D,. The map u = F(A) is 
simply the restriction of g to each aLI,,. with respect to the background frame. With respect 
to this frame 8,; = 3, simply due to the choice of coordinate system. Thus we have 

u-‘&L1 : s* -+ L+gl(n. C). 

But this is exactly the statement that II = F(A) is a holomorphic map into the loop group. 
We can see this by looking closely at the complex structure d on QU(n). For 6 E L%(n), 
.I< = it(mod L+gl(n. C)) and in fact this defines J since each element of Lgl(n, C) has a 
unique unitary representative in its L+gl(n, C) coset. Put IU = x + iv, then u is holomorphic 
when 

o=u-’ (au/ax + Jau/aq’) 

EU -‘(au/ax + i&lay) (mod L+gl(n, C)). il 

Remark 3.5. In Section 4 we will show that F defines a diffeomorphism from the space 
of instantons to the space of holomorphic maps. This fact together with the proof of the 
Atiyah-Jones conjecture and an analogue of the Atiyah-Jones conjecture for maps into the 
loop group implies that F defined in Corollary 3.3 is a homotopy equivalence. 

4. Existence and uniqueness 

In this section we will show that when restricted to Ms4, gauge equivalence classes of 
ASD connections over S4, the map F defines a diffeomorphism 

3 : MS4 + Hol*(S’, L?U(n), 

Associate to any instanton A the pair (H, q) consisting of a metric H = j“g using the 
frame g supplied by Proposition 3.1 and 17 : S2 x D + gl(n, C), the holomorphic (in z) 
extension of the map F(A)-‘&3(A) : S” --+ L+gl(rz, C). By construction H E I on 
Si c S4. We can retrieve A from (H, q) since with respect to the gauge defined by g, we 

get 

A,;, = rl, Ai = 0, A,Ll = Hp’&lH - H-‘$H. A; = H-‘&H. (7) 

Notice that gauge-equivalent connections produce the same H. Associate to the pair (H, 0) 
the Hermitian-Yang-Mills tensor 
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B(H, 17) = (1 - Iz12)2a;7(H-‘&H) + (1 + IW12)2{&#-‘i3,H) 

- 8,(H-‘iTH) - &,v + [q. H-'i?,,H - H-‘ijTHll. 

This vanishes when (H. q) comes from an instanton. Later we will study more general 
pairs (H, 17) and attempt to solve the equation B( H. q) = 0. This is elliptic in H away from 
s,; c s4. 

4. I. Uniqueness 

Proposition 4.1. Two instuntons A 1 and A2 are gauge equivalent ifand only if3( A 1) = 

3(A2). 

Proo$ Associate to each instanton the pair (Hi, q) (by assumption q is common to both). 
Set h = H,-‘Hz. This is an endomorphism of the bundle over S4. So far we have been 
working gauge invariantly. In order to compare A 1 and A? we will choose the gauge defined 
by Proposition 3.1. Thus we identify gt and g2. With respect to this gauge we have 

,942 = ,?~AI 

where we have separated the connections, respectively, into their (1.0) and (0, 1) parts. 
This expression is gauge-invariant and in fact it holds in all gauges. (We have merely used 
go and gz to specify isomorphisms with the bundle E.) Since the connections are ASD we 
have 

FA, = aAl o aA’ + aAl o jAi =+ FA? = FA, + aA’(h-‘aAlh). 

Thus from R( H; , q) = 0 we get 

0 = (1 - Ir12)2a;‘(h-‘&+h) + (1 + lw12)2{a,;i(h-‘a;‘h) 

Lemma 4.2. The function tr (h) is subharmonic. 

Proo$ With respect to the metric in (4), the Laplacian is given by 

A = -(I - lz12)2a~a~ - (1 + IW/2)2&i,a,. 

so 

-Atr(h) = (1 - I~12)?rr{(a,A’h)(h-‘aAth) + hatl(h-*a”lh)) 

+ (1 + IU,/2)2tr((a~lh)(h-‘a~ih) + hal~‘(h-‘a~lh)], 

(to 

which we will show to be non-negative. The two right terms vanish by (8). In order to show 
that the other two terms are non-negative we will choose a gauge in which aAl and $AI are 
adjoints. Use the gt constructed in Proposition 3.1 to transform from the holomorphic frame 
to a unitary frame. With respect to this frame h = (jy)-’ H2g-’ which is self-adjoint. In 
fact, since we have the freedom to replace g with ug and thus h with uhu-’ where 11 is 
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a constant unitary transformation, at any point we can arrange that h is diagonal. It has 
positive eigenvalues since Hz is a metric. So each term is of the form rr(fiThM) > 0 and 
the lemma follows. L. 

Proqf of Proposition 4.1 (continued). By reversing the roles of HI and Hz we see that 
tr(h-‘) is also subharmonic. Put a(h) = tr(h) + tr(h-‘) - 2n. Since the eigenvalues of 
h are all positive, then o(h) 2 0 everywhere. We also know that a(h) is subharmonic and 
on the boundary a(h) = 0. By the maximum principle a(h) 5 0 so a(lz) = 0 and h E I. 
Thus HI = HZ and A1 is gauge-equivalent to A?. 0 

4.2. The heatjow 

We will now prove that every based holomorphic map from the two-sphere to the loop 
group comes from an instanton over the four-sphere. In order to do this we will prove the 
existence theorems for instantons in a standard way using a heat flow. We closely follow 
the approach used in [ 121 to prove a similar theorem for Euclidean monopoles. Our proof 
of the long time existence of the flow on a subset of S4 is equivalent to the proof in 1191. 
It is necessary that we go through this proof in order to get estimates to extend to S” and 
since our proof will be necessary when we generalise to other Riemann surfaces. All these 
methods are really variations on Donaldson’s proof of the existence of ASD connections 
on stable holomorphic bundles over a Kahler surface [5]. 

Away from /z, = 1, the Hermitian-Yang-Mills tensor B( H, a) is elliptic in H. We wish 
to find a solution of the equation B(H. q) = 0 and since n encodes the holomorphic map 
we will be able to retrieve an ASD connection associated to that map. A solution of the heat 
how equation 

H-bH/& = B(H, q). H(u). z. 0) = I. (9) 

will converge to the required solution as f --) c~. Later we will explain the significance of 
the fact that we can choose the constant metric I for an initial condition. 

lt is disappointing that we have not been able to solve (9) on the compact manifold S4 
without cutting it open and solving a sequence of boundary-value problems. It seems that the 
metrics we use are not C2.” or W’.2 as the existing methods require. Probably the metrics 
are W2.J’ which make it seem likely that there is a way around the boundary-value problem. 

A word on existent methods. The round metric on S4 - SA is conformally equivalent to 
an infinite volume Kahler metric on S2 x D. The H we use differs from the Hermitian- 
Yang-Mills fi by a complex gauge transformation, fi = jTHp where p : I/ x D + 
GL(n. C). U C S2 satisfies 

&p = 0, -&p.p=rj 

The existence of p follows from the existence of a universal holomorphic bundle over 
52 U (n) x S2 which requires explicit knowledge of the cell decomposition of the loop group 
[ 171. By restricting to a compact subset of S2 x D we can use Simpson’s results [ 191 to get 
long-time existence of the heat flow for fi. We would still need to go through the proof to 
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get precise estimates of how far the metric flows from the initial choice in order to extend 

to S4 as well as interpret the result as in Section 6. For a more general Riemann surface, we 
do not have the existence of the complex gauge transformation p that relates the metrics. 
For this reason we do not use Simpson’s results. Still, once we have the ASD connection 
then we can produce the required complex gauge transformation, so the two methods are 
related. Essentially a corollary of our result is a theorem about holomorphic disks in loop 
groups related to general Riemann surfaces. In particular we get an alternative proof of the 
existence of the universal holomorphic bundle over the loop group. 

Put 

x, = ((w,z) E s’ x D 1 IZI 5 t] 

so the X, exhaust S’ x D as 6 -+ 1 

Proposition 4.3. Over each X, there is a unique solution, H:, of the boundary-value 
problem 

H-‘i)H/i3t = B(H, q), H(w, Z, 0) = 1. Hlijx, = I (10) 

de$nedfor all t and converging to a smooth metric H& that satisjes B(H&,. q) = 0. 

Prooj Since we have fixed X, for the moment we will omit the superscript in H: during 
this proof. Short-time existence of a solution of (10) is automatic since B( H, 17) is elliptic in 
H and we have Dirichlet boundary conditions. In order to extend this to long-time existence 
we will take the approach given by Donaldson [5] and extended by Simpson [ 191 and show 
that a solution on [0, r) gives a limit at T which is a good initial condition to start the flow 
again. The lemmas we need to prove on the way use the details of our particular case and 
allow us to proceed with Donaldson’s proof. 

Lemma 4.4. Zf H’ and H2 are two solutions of the heat equation then 

&a + Aa 5 0 

,fi~ra=tr(H,p’H2)+tr(H’H~‘)-2n 

(11) 

Proef We can generalise the proof of Proposition 4.1 as follows. So far we have shown 
that 

tr(hB(H2. r) - hB(H’, q)} F -Atr(h). 

Now, 

tr(&h) = tr(hHT’&Hz) - tr(H,-‘&H’h). 

so from the flow equation we get &tr(h) + Atr(h) 5 0 and by reversing the roles of H’ 
and HZ, (11) follows. 0 



Apply ( I I) to H, and HI+,. the flow at two times. Since they obey the same boundary 
conditions on X,, (T vanishes on the boundary. By the maximum principle supx o is a 
non-increasing function oft. By continuity, for any p > 0 there exists a 6 small enough so 
that 

supo(H,. H(f) < p 
s, 

for 0 < r, t’ < S. It follows from the non-increasing property of (T that 

supo(H,, H,,) < p 
Y, 

for T - S < t. t’ < T. Since p can be made arbitrarily small, H, is a Cauchy sequence 
in the C” norm as t + T. The metrics take their values in a complete metric space 
(described below) and the function D acts like the metric so there is a continuous limit HT 
of the sequence. Notice also that ( 11) and the maximum principle show that this short-time 
solution to the heat flow equation is unique. 

A metric H takes its values in the space GL(n. C)/U(n) which comes equipped with 
the complete metric tl which is given locally by tr(H-‘SH)‘. Thus 

d(H(ur. :. t). H(u). ,, 0)) = IB(H,. q)/ ds. 

0 

where IB(H,, , q)/’ = rr(B*B) and the adjoint is taken with respect to the metric H,>. Notice 
that B* = B so IB(H,,. ?])I’ = rr-(B’). 

Lemma 4.5. !f’ H, i.s LI solution of the heat equation thrrl 

(d/dt + A)lB(H,. rl)l 5 0 whenever lBl > 0. (12) 

Pmt$ First notice that it is only 8 A1 the holomorphic part of connection (7). that depends 
on I. so 

iJ,B(H, ~1) = (1 - /~/‘)‘iI!(&(tiA)) + (I + lru1’)‘i3~(i),(aI~)) 

and since &(a”) = il”(H-‘3, H), we have 

&B(H, q) = ((I - ~~~‘)%;P~^ + (I + Iwl*)“a$a,q,(H-‘a,H) 

= {(I - I$)‘$+” + (I + ~w\*)*IT@~)B(H, 7). 

This last expression looks quite like the Laplacian and in fact 

&IB)* = &rr(B2) = 2tr(B&B) 

=2rr((l - lzlZ)%a$I~ + (1 + lw12)2B@;}, 

= -Afr(B*) - 2(1 - (z,12)‘tr($Ba~B) 

-2(l + lu,12)2fr(il,~Ba~B) 
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2lBl(& + A)l.BI = (a, + A)lBl’ + 2(1 - lz12)*(/a,lBI(’ + l&lB112) 

+2(1 + lw12)‘(la,,lBIl’ + lwq12) 

is non-positive by Kato’s inequality I & I ,f I I ( 18-f ,f I. cl 

It follows from (12) and the maximum principle that if there is a function f’(ul. c. I) 
defined on X, x R that satisfies (8, + A)f = 0 and I&)/ = (B(I. q)l 5 .f’(w. z, 0) then 

H(H,. r)l _( f(w, z, t) for all t. 

Lemma 4.6. Since q is the holomorphic extension oj’u-‘a,~, for u given holomorphic 
map u : S’ -+ QlJ(n), there exists a constant M such that IB(I, q)l ( M(1 - I:/) 011 
S’ x D. 

Proof The map 

B(I. Q) = -(I + lW12)2(a,,rl + a,,qT + [q. ijT1) 

is continuous on S2 x D. (Notice that it is invariant under the change w H zv-’ .) Thus, if 
we can show that B(I. q)/( 1 - lzl) is continuous on S2 x D then it must be bounded since 
its domain is a compact set. Away from (z/ = I this is clear. At JzI = 1, B(Z, 7) = 0 since 
rj = II -‘&,u there so i3,,~ + 3~,~T + [q, iT] is the curvature of a flat connection and hence 
0. Thus, a continuous limit of B(I, r])/(l - lzl) as 1~1 -+ I is the same as a continuous 
derivative iIl:lB(I, q) at IzJ = 1. Away from IzI = 1, 11 satisfies 32~ = 0. Thus 

/:li3jz1t1 = -i&j~. /z18iz1iT = i&ijT 

and these derivatives extend continuously to 1~ I = 1. Therefore 

Izla~,,R(I, a) = -(I -t lu~I)2~&~lzla,~,~ + a,Izla,.-,rT 

+ [IZl~l,lV9 qT1 + [r, I~l~,,,tiTIl 

= -(l + lu~l)2{-ia,,&77j + i&78+ijT 

- i[&Tj. tT] + $7. &rlT]] 

and this last expression extends continuously to the boundary since the derivatives with 
respect to 0 exist. 0 

Lemma 4.7. There exists a function, C( lzl), depending on v but independent of 6, contin- 
uous on [0, I] with C( 1) = 0, and such that 

d(H(w. z, t), 1) 5 C(lzl). 

ProofI Usethemaximumprinciplewith f(w, z, 0) = M(1 -lzl).Noticethat f(w, z, 0) = 
f(lz/), so f (w, z, t) = f (lzl, t) since the Laplacian reduces to the one-dimensional 
Laplacian. From the flow equation (10) we have 
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i ?i 

tl(H,. Ho) = .I’ B(H,)dt 5 ‘,/l~i:.;.r)dr +u~,,i)dr. 
s 

(13) 

0 0 0 

Now. .f’(lz:l. t) = J’.f(.s. O)k(lzl. s. t) ds where k is the one-dimensional heat kernel opera- 
tor. Since lo” k( )z, ( , s. t) dt = G( /z) ~ s), Green’s operator, is finite, Fubini’s theorem allows 
us to interchange the order of integration in (13). So 

c I 

cl(H,(w,z), Ho(w.z)) 5 M 
.I 

(1 -s)G(lzI.s)ds 5 M 
.I 

(1 -<s)G(lzl.s)ds. 

0 0 

With respect to the Laplacian A = -( 1 - lz/2)28~,, 

G(lzl, s) = - max(ln(lzl), ln(s))/(l - sI)~ 

Actually, this Green’s operator is only valid for the entire interval (c = 1) and Fu- 
bini’s theorem does not apply there. There is a monotone property of heat kernels which 
means that our choice of G is simply an overestimate when t < 1, so the calculation is 
valid. 

Thus it remains to estimate the quantity 

I..1 I 

- 
s 

(1 -s)ln(lz()/(l -.s2)2d,s - (1 -s)ln(s)/(l -.y2)2dS. 
s 

(14) 
0 I:1 

The finite integral - hi, ln( 1 - s)/s ds dominates (14) so the lemma follows. 0 

Proofof Proposition 4.3 (conclusion). The preceding lemmas have shown that there is a 
solution to the heat equation that satisfies Ht -+ HT in Co and B(H,. q) is uniformly 
bounded. These are the conditions required to use Simpson’s extension of Donaldson’s 
result to show that H, are bounded in W2,f’ uniformly in t. Hamilton’s methods 11 l] then 
give control of all higher Sobolev norms. Thus we get a solution, H,, of (10) for all t that 
converges to a smooth limit Hs defined on X, and satisfying B(H,, 17) = 0 and H, = I 
on 3X,. 

Proposition 4.8. For each holomorphic mup 14 : S2 + 52 SiJ (n) there is an ASD connec- 
tion A on S4 such that F(A) = u. 

ProoJ: We have proven the existence of a family of metrics HC , respectively, defined over 
X, and satisfying B( Ht , q) = 0. Since c (H’ , H”) is subharmonic its maximum occurs 
at the boundary of the set on which it is defined. For E < E’, the common set is X, . From 
Lemma 4.7, 

d(H%, z), H’(w, z)) I C(c) 

since the initial value of the flow for H” is given by Ht = I on 3X,. Since C(E) -+ 0 
as c + 1, the sequence (H’ ) is Cauchy as E -+ 1. Thus it converges uniformly to a limit 
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H. Moreover, on each X, the limit satisfies B(H, q) = 0 so by regularity is smooth. This 
comes from a remark of Simpson [ 191. The difference between this situation and that in the 
proof of Proposition 4.3 is that the metrics no longer satisfy Dirichlet boundary conditions 
so we need to work with W,:Cp. This argument applies to all X, so the limit H is smooth 
on S4 - SA and continuous on all of S4, converging to I on SA. It remains to show that 
this metric H produces an ASD connection using (7). The connection A is defined and 
ASD on S4 - Sd. By the following lemma, A has finite charge. Since codimension three 
singularities of finite charge ASD connections can be removed [ 181, A is smooth on all of 
s1. 

Lemma 4.9. The curvature of the lirding come&on A hasjifinitr L2 nom. 

Pmo~? We will show that on X = lim,,o X, the heat flow decreases the total charge 
(which is just an explicit version of the fact that the heat flow is the same as the Yang-Mills 
flow), and that the charge of the initial connection is bounded. Lemmas 4.5 and 4.6 show 
that the self-dual (SD) part of the curvature decreases. In order to show that the integral 
of the ASD part of the curvature and hence the charge decreases, it is sufficient to show 
that k(E) = CT(E) - icl (E)2, the Chem number of the bundle restricted to X, is constant 
throughout the flow. Then any decrease in the integral of the SD part of the curvature will be 
matched by the same decrease in the integral of the ASD part of the curvature. The fractional 
part of k(E) is given by the Chem-Simons invariant of the connection restricted to 8X. 
Since k(E) varies continuously with t it is sufficient to show that its fractional part remains 
constant in order to deduce that it remains constant. The derivative of the Chem-Simons 
invariant has quite a simple form: 

a,k(E) = .I FA A&A = 
.I 

FA A aAB(H. q). 

iX 8X 

Here we have used the fact that &A = 8 A B( H, q), where 8 A is the holomorphic part of dA. 
Since B(H, 17) vanishes on 8X then aAB(H, 17) = 0 also vanishes there since it is constant 
in t and in the limit B(H, ~7) = 0. Thus the Chem number is constant. 

We will calculate the initial Chern number of the connection and then together with the 
estimate of Lemma 4.6 we have a bound on the initial charge. 

k(E) = & s rr(F,) = -$ 
s 

tt-(@jTi3,q) didz dti dw, 

S2xD S2xD 

since only the Fz6 and Fi, terms contribute. Since q is holomorphic in z, then on the disk 
d(rr(qTa;o) dz} = tr(&ijT&q) dZdz. So 

k(E) = --& 
ss 

tr(ijTa,q) dzdG dui. 

s’ I,‘/=1 
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On 1,7/ = 1, n = U-‘&U so ij“ = --IIF’ &,u. Since u is holomorphic, we can put 
K’illi,~~ = ( + iJ(, where < = ~up’ilRe(,,v~~~ and J is the complex structure on G’SU(n). 
Therefore 

I - 
2n s 

tr(aT&q)dz = s 
J’ 

tv((c - i./<)&(c + iJO} dH 

I:I=l s’ 
-1 

ZZ- 
2n s 

i tr(t& Jt - J[a&) dH 

S’ 
i 

=---- 
2n s 

-tr(<&J6 + (JOa, J(JO) d0 

= ik(t, <) + g(JC, JO). 

where g is the Kahler metric on QU (n). Thus 

k(E) = & s dti dw 
(g(t, 0 + g(Jt, JO)F-r---. 

I 
s’ 

which is the charge of U. 0 

Proof of Proposition 4.8 (conclusion). The fact that 3(A) = u is immediate and the proof 
of the proposition is complete. El 

Corollary 4.10. 

3 : Ms” + Hol*(S”. aU(n)) 

is a diffeomorphism. 

Proofi We have shown that 3 is smooth, one-to-one and onto. A linearisation of the unique- 
ness argument shows that 03 is an isomorphism at each point. With respect to any topology 
that makes the two spaces into Banach manifolds (say, the Ck topology), we can invoke the 
inverse function theorem to get the required result. 0 

5. General C 

The results over S4 generalise immediately to a family of four-manifolds obtained from 
general Riemann surfaces. Let 5 be a compact Riemann surface. Construct the four- 
manifold X by performing surgery on S’ x {co} c S2 x 5 - replace a neighbourhood of 
S* x (00) with B3 x S’. When 5 = S2, X = S4. Label the core of B’ x S’ by SA C X. The 
open manifold X - SA is foliated by a family of Riemann surfaces Z = 5 - D parametrised 
by S* with common boundary a_E = Si. Put a metric on X that is conformally equivalent 
to the product Kahler metric on S* x C given by the round metric on S2 and a hyperbolic 
metric on Z. Such a conformal compactification of the product metric exists in general. In 
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fact, there is a metric with constant scalar curvature in the conformal class. (Since the ends 

of a complete hyperbolic two-manifold have been classified this is a local problem over 
S1 x B3. For our purposes, it is only necessary that a metric exists locally since then we 
can use elliptic regularity to remove singularities. The metric in a neighbourhood of a point 
on aZ is isometric to a neighbourhood of a point on the boundary of the hyperbolic disk 
so the S4 case gives the required local metric.) Theorem 1.4 follows from the following 
proposition combined with the implicit function theorem. 

Proposition 5.1. There is (I .smooth map from ,44x, the space of instuntons on u framed 
U (n)-bundleoverX, to thespaceofbasedholomorphicmapsfrnm S2 to LG L(n, C)/LzG L 
(II. C) that is one-to-one and onto. 

Proo3(: We have set up the argument for X = S4 so that it adapts easily to this more general 
situation. In order to define the map 

F : Mx + Hol*(S*. LGL(n, C)/LsGL(n. C)), 

we appeal to a generalisation of the factorisation of Theorem 3.2 due to Donaldson [7]. 
When we restrict a connection on E over X to (x) x C, it defines a holomorphic structure 
on E there. The restriction is holomorphically trivial and Donaldson proves that amongst 
the holomorphic trivialisations there is a trivialisation that is unitary when restricted to 8 C. 
Unlike when C = D, such a trivialisation is not unique. The frame, u, it defines on the 
boundary is well-defined only as a section of a flat u(n)-bundle over S1. Thus u takes its 
values inside the twisted loop group. The frame II is smooth in w and 

u-‘a,,u : S’ + LgGL(n. C). (15, 

Notice that (15) is a true map without any of the twisting of a section because the fat 
structure on Els; is independent of w. Let v : S’ x C + G L (n, C) be the holomorphic 

(in z) extension of (15). As before we wish to solve the equation B(H, q) = 0 where B is 
the Hermitian-Yang-Mills tensor over S* x C. The Kahler metric and the Laplacian over 
S’ x C are the same as those over S2 x D since the hyperbolic metric and Laplacian over 
D are invariant under SU (1, 1). Thus the argument for uniqueness of instantons with the 
same holomorphic map goes through as before. We use H = I for the initial metric in the 
heat flow equation over X, c X. The sets X, are obtained by removing neighbourhoods 
of SA. Short-time existence of the flow comes from ellipticity again. Except for the use of 
Green’s function, the long-time existence argument goes through as before. We still get a 
bound, f, on IB(I, r)/ that vanishes like O(1) near aZ so 

d(H,(w, z), I) I 
s 
f (s)G(z, s) ds 

c 

for Green’s function G(z, s) over C. Away from aZ this is finite as required. We need to 
know that it vanishes as z approaches the boundary so that the Cauchy sequence argument 
of Proposition 4.8 goes through. This follows from the fact that in a neighbourhood of a 
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point on SA c X, the situation is isometric to that for S’ where we have already proven 
the required vanishing as z approaches the boundary. Finally. the limiting connection on 
X - .S,t has finite charge because the Chern number on each X, is constant throughout the 
flow as in Lemma 4.9 and the initial charge is finite because again the interest only lies near 
SA where the situation mimics that of S3. Since there is a conformally equivalent metric 
that extends over X, regularity gives smoothness of the connection over all of X. LJ 

Remark 5.2. Consider the complete hyperbolic surface C that looks like a punctured unit 
disk with metric 

ds’ = d?dz/(]z] In ]z])‘. 

In terms of the upper-half-space model of the hyperbolic plane, it is obtained by quotienting 
out by the action < H < + 2n. The U (I)-invariant instantons on S2 x C correspond to 
Euclidean monopoles. More generally, we get periodic instantons or calorons. The proof in 
this section does not apply to punctured Riemann surfaces. It is necessary to generalise the 
results here in order to use these methods in the study of calorons [ 161. 

6. Stretching the metric 

In this section we will explain the significance of the fact that we can choose H = I as 
an initial condition in the flow equation. It shows that the connection defined by (I, n) is 
approximately an instanton and can be interpreted as an instanton with respect to a very 
singular metric. 

The round metric on S” is conformally equivalent to the metric 

ds’ z 
duda + (d]b])2 + dQ2 = dAdA + (d]B])’ 

V-4* IB12 
+ de2. 

where h = ]b]e”. B = I Ble’“. Consider, instead, the metric 

ds2 = da da + (WI)’ + K2 de2 = dA dA + WI)’ 
IW IB12 

+ K’ d8’ (16) 

for K > 0. This metric is not defined over S,& c S4. Still, we will study W’,* instantons 
with respect to this metric over S4 - Sk. Really we are working over H’ x S’ 2 S4 - SC. 
We can interpret K as the length of the circle or the curvature of hyperbolic space. 

In a sense, as we let K --f 00, the instantons with respect to the metric (16) converge to 
connections of the form 

A = VdtZ - iTdw, 

which are the initial values for the heat flow for the round metric over S4. Since this idea 
serves only to illuminate the proof of Theorem 1.1, we are being rather loose with this 
notion of convergence. There are four points on this issue we should note. 
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It will be clear that the class of instantons over S4 - S,$ that we consider here lies 
inside the space of finite energy connections. For the converse - that we get all finite 
energy instantons - we rely on a recent result of Mazzeo and Rade [ 151. 
In the limit, the connections actually concentrate at Sk so we have to reparametrise 
the normal bundle of Sk to allow for this. 
We will prove something weaker than convergence of the connections. We will prove 
that the associated metrics H converge in C” rather than in C ’ . 
Atiyah and Murray [l] studied the non-renormalised zero mass limit of hyperbolic 
monopoles and conjectured a relationship with the Yang-Baxter equations. The re- 
sults here suggest that one can similarly pursue a connection between instantons and 
solutions of the Yang-Baxter equation. 

With respect to the parametrisation of SL x D, ( 16) is 

4dGdw 
ds’ = sinh2(p) (1 + ,w,2)2 + dp* + K’ dB’, 

where p gives the hyperbolic distance from the centre of H”. Previously, we put z = e-p+ic,, 
so 4didz/( 1 - lzj*)’ = (dp’ + de*)/ sinh2(p). To rescale, put p = KT and z = e-r+iH. 
Now, (16) is conformally equivalent to the Kahler metric 

ds2 = 
4dGdw 

(1 + ]uJ]*)2 + 

K? sinh2(t) 4didz 

sinh*(Kr) (1 - ]:I’)” 
(17) 

which makes it clear that the metric degenerates on Sk (for K > 1). The resealing p = KS, 

besides exactly compensating for the move of the charge towards Sk, is quite natural when 
we intepret K as the curvature of H” - the new coordinate r gives the distance with respect 
to the new hyperbolic metric. 

The Hermitian-Yang-Mills tensor with respect to the new metric is 

&(H. rl) = sinh”(Kr) (1 - ]z]2)2&(H-‘,;,) 
~~ sinh”(s) 

+ (1 + lu~~2)2[~~,(H-‘~,,H) - a,s(H-‘~j~H) - 8,~ 

+ [q, H-‘&H - H-‘fjTH]]. 

The equation B, (H, q) = 0 is elliptic away from SA and S&. For 61 > ~2, define 

X t,,t? = ((~3 Z) E S* x D 161 L lzl L ~1 

so the X,, ,<? exhaust S4 - Sk U SA. 

Proposition 6.1. Over each X,, ,c2 there is a unique solution, Hf ’ “‘. of the houndaq-value 
problem 

H-LaH/i3t = B,(H, q). H(w, z, 0) = I, Hlax = I Cl 62 (18) 

dgfinedfor all t and converging to a smooth metric HzvE2 that satis$es B, (Hz”‘, q) = 0. 



Proof: Since the change in the Laplacian for the new metric mimics the change in the 
Hermitian-Yang-Mills tensor, the proof of Proposition 4.1 works for this boundary-value 
problem except that we have to modify Green’s function in Lemma 4.7. It is now given 

by 

G(lzl. s) = - 
max{h(lzj). in(s)) K’ sinh”(s) 

(1 - .s2)? sinh2(Kr) 

For K > 1 the integral (14) with the new Green’s function is dominated by the finite 
integral 

I I 

-1 

Ml -f) ds _ 1 
.F K s 

ln( 1 - .s” ) do 
: 

s 
I:/ I:/” 

so we can replace C(lz1) in Lemma 4.7 by C(lzl")/~. 0 

We can now state the analogue of Proposition 4.8. 

Proposition 6.2. For each holomorphic map u : S2 + QSlJ (n) there is a unique,finite 
charge connection A on S4 - S& that is ASD with respect to the metric (17), with 

and such that its associated metric HK is bounded. 

ProojI We will simply modify the proofs of Propositions 4.1 and 4.8. For uniqueness, we 
again use subharmonicity. For any two metrics HI, H2 that come from two connections 
satisfying the properties above, put h = tr (HI ’ Hz) and B = tr(h) + tr(h-‘) - 2n. Then 
cr is subharmonic on S4 - Sk, equal to 0 on SA and bounded. For any h > 0, (T + h ln(lz1) 
is also subharmonic and 0 on Si, but now negative near Sk. By the maximum principle 
(T + h ln(lz1) 5 0 on all of S4 - Sk. Since this is true for all h, (T 5 0. By construction 
o >Osoa =OandHl = Hz. 

For existence we need to show that the sequence of metrics Hz”’ is Cauchy as ~1 + 1 
and ~2 + 0. For ??t > t2 > ~3 > ~4, associate (T to the two metrics Hz”” and Hz’F3. 
Again, n is subharmonic so it takes its maximum on the boundary of the set over which both 

are defined, i3X,,,ti. Since the boundary values of Hz“’ give the initial values of Hz“’ on 
i3X t2.tj, Proposition 6.1 shows that (r is less than a constant times C(~,“)/K and C(C;)/K 

on the respective boundary components. (The constant enters since the distance function 
on GL(n. C)/ U(n) dominates CT times a constant.) If we label these two maximum values 
by Mz and MS then the function 

MZ + M3 M/zl/ed/ ln(ede) (19) 

is harmonic and takes on the values M2 and M3 on the respective boundary components. 
Thus 0 is less than (19) on all of Xt2.ti. As t2 + 1 and ~3 -+ 0, (19) goes to zero. Hence 
the sequence is Cauchy and converges in Co to a limit H,. As before, the convergence is 
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smooth on the S4 - Sk U Sd so HK is smooth there also and satisfies B,(H, r]) = 0. The 
ASD connection produced by (H, , r]) extends across Sh by regularity since the charge is 
finite as before. The same is not true near Sk since the metric degenerates. c3 

Corollary 6.3. As K -+ 00, H, -+ I unijormly on compact subsets of S4 - S&. 

Proof This simply follows from the fact that C/K + 0 uniformly since C is bounded. 
n 

We might try to analyse the convergence more closely to see if it remains true on the 
level of the connections. Alternatively, we might learn from this that by using the heat flow 
without stretching the metric we can avoid some of the difficult analytic issues involved in 
similar problems. Dostoglou and Salamon [9,10] solved the Atiyah-Floer conjecture for a 
mapping cylinder Y = S’ xh Z by stretching the metric in the S’ direction. The techniques 
in this paper suggest an alternative approach. In one direction, associate to an instanton 
over R x Y a holomorphic curve into M, the space of flat connections over C, by taking 
the unique (up to conjugation) Hat connection over each {(t, 0)) x E that defines the same 
holomorphic structure as the restriction of the instanton. The Hermitian-Yang-Mills tensor 
is very natural in this problem and will give uniqueness. It will also enable us to use the 
heat flow to go in the other direction and obtain an instanton from a holomorphic map. 

In another direction, we might hope to use the techniques here to study hyperbolic 
monopoles over a general hyperbolic manifold Y 141. We have observed here that as the 
curvature of hyperbolic space tends to -co, the instantons concentrate at the boundary. It 
seems reasonable to guess that this would occur for general Y, particularly in light of the 
conjecture of Austin and Braam [3] that a hyperbolic monopole on Y is determined by its 
boundary values. Rather than actually take the limit, we can use this as intuition for a good 
initial guess for the heat flow. Since we reparametrise the normal bundle in the limit, it 
would mean that the initial metric need only be defined on infinite tubes at the boundary 
and set to be trivial on the interior of Y. 
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